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The challenge of selective, transition-metal catalyzed function-
alization of alkanéshas attracted increasing attention ever since
the development of the classical Shilov system, which empldys Pt
PtV salts in aqueous media, and particularly the recent demonstra-
tion that methane can be catalytically activated by an organometallic
complex of Pt(l1)? An important conceptual advance in the field
has been the proposed existence ef-alkane comple¥* on the
reaction pathway of either metal insertion into the i€ bond or
alkane elimination from the metal center. It has been a desirable
goal to structurally and kinetically characterize such weakly bound
metal-alkane intermediate complexes. Unfortunately, direct ob-
servation ofr-alkane intermediates in the oxidative addition reaction
required ultrafast spectroscopic technidffiesid low-temperature
gas matriced9 Furthermore, in the reductive elimination reaction
the thermal instability of these intermediates did not allow for dis-
secting the two-step pathway and studying the formation of the
o-complex as an independent kinetic event without the accompanied
liberation of the alkane product.

We recently reported on the synthesis of an air- and moisture- cu

stable glkyldlhydrldo platinum(lV) complex, ToPtMe({1, Tp Figure 1. ORTEP diagram of TpPtMe(H)1. Selected bond distances (A)
= hydridotris(pyrazolyl)borate).Here we report that although and bond angles (deg): Pt2E(11) 2.01(8), Pt(2yN(9) 2.19(2), Pt(2)
has a very high energy barrier for the liberation of methane, it N(11) 2.20(2), Pt(2}N(7) 2.20(2), C(11)Pt(2-N(7) 177(2), C(11)
readily forms as-CH, Pt(ll) complex, whose existence is strongly ~ P2)-N(9), 91(2), C(11)-Pt(2)-N(11) 96(2), N(9)-Pt(2)-N(11), 84.0(8),
indicated by the observed inverse kinetic isotope effiecthe H/D N(9)—Pt(2)~N(7) 88.1(9), N(11) P(2)-N(7) 86.7(9). The hydride ligands

. - (H3 and H4) were placed in calculated positions. For more details, see the
exchange reaction at 5&. To the best of our knowledge, this is Supporting information.
the first example of a hydridoalkylmetal complex that undergoes
isotopic scrambling at elevated temperatures without concomitant that no NMR spectral changes could be observed even after heating
liberation of either alkane or dihydrogéA.Nevertheless, in the at 55-70 °C in CH;OH for several hours. However, whdnwas
presence of PMgcomplexl undergoes facile reductive elimination  heated at the same temperatures in eithey@IDor in a 1:1 mixture
to produce TpPt(I)Me(PMg and dihydrogen rather than methane.  of C¢Hg and CRXOD, the hydride and methyl signals disappeared

completely from théH NMR spectrum with no change in the Tp

Scheme 1 signals. Remarkably, when the resultards was heated under the
4_\ CH3 F\ CD3 same conditions in C§DH, it was converted back tb quantita-
N“f .n\ CD50D N"' P tively (Scheme 1). Clearly, liberation of methane with or without
F | ‘ - F | C—H activation of benzene does not occur under these conditions.
\ CHZOH _ \ Since the observed H/D exchange points at the existence-of a
H” N@ H N@ alkane intermediaté® the rates of this exchange were further pur-
! 105 sued. Thus, a solution dfin CD;OD (0.8 mL) was heated in an
Pt"H\CHz Pt_'? Pt- -H—CH, NMR probe at 55C and the progress of the reaction was monitored
T CHg by *H NMR for 6 h until both the hydrided —19.85) and methyl
n2-HH n2HCside-on  1'-H end-on (6 1.06) signals could no longer be detected. Since the time for the

1 n n disappearance of the hydride signal (less than 5 min) was much
shorter than that of the methyl signal (several hours), we considered
the H/D exchange between hydride ligands and solvent molecules
as a fast preequilibrium step and neglected its contribution to the
kinetic isotope effect. After completion of the reaction, the solvent

The thermal stability ofl (Figure 1) was evident from the fact
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# Technion-Israel Institute of Technology. was carefully removed under high vacuum, CIB (0.8 mL) was

§ Phone: (858) 784-8511. Fax: (858) 788735. E-mail: keinan@scripps.edu. ; ; R

YIncumbent of the Benno Gitter & llana Ben-Ami chair of Biotechnology, added, and the_ resulting solution w5 was hea_lted_ in the NMR
Technion. probe as described above. Pseudo-first-order kinetics were observed
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Figure 2. Proposed potential energy surface for the reductive elimination
of methane fronil. The zero-point energy differences between hydrogen
containing species (thin line) and their deuterium analogues (thick line)
are assumed to follow the general order &Gup(1l) < AGHp(TS) <
AGhp(2).

in both the conversion df to 1-ds (kop® = 2.42(3)x 1074572, ty)n
~ 48 min) and the reversion dfds to 1 (kond' = 1.84(5) x 104
s, typ ~ 63 min), ky/kp = 0.76.

An inverse kinetic isotope effect can occur in a reaction that is
characterized by a single rate-determining step with a product-like
transition staté2bFor the reductive coupling in hydridoalkylmetal
complexes, the inverse kinetic isotope effect could stem from the
fact that the energy barrier for breaking a deuteritmmetal bond
is lower than that of a proteametal bond. Such effects were
previously observed for the loss of alkanes from hydridoalkyl com-
plexes via a proposed-alkane intermediatek{/kp ranging from
0.29 to 0.80yad4ab.SThe isotope effect in these reports was obtained
by measuring the relative rates of alkane liberation. By contrast,
no liberation of methane could be detected in our case. Therefore,
we propose that our observed inverse kinetic isotope efkgtty
= 0.76) should reflect thG* of the reductive coupling step (in
which ac-methane Pt(Il) complex is formed)° but not theAG*
of the overall process (in which a dealkylated Pt(Il) complex and
free methane are formeéd.Accordingly, the proposed energy
diagram (Figure 2) illustrates that the conversionlab the o-
methane Pt(Il) complex2, has a lower barrier than that of the
conversion of2 to the dealkylated Pt(ll) complex3, and free
methane. In previous reports oralkane, the barriers for the transi-
tion from 2 to 3 appeared to be either lower or comparable to that
of the transition fromi to 2.1 Due to the energetically unfavorable

high electron density on a metal in 18e Pt(ll) species, we assume

that complex2 is a 16e species with aj?-Tp rather than an-Tp
binding mode.

Since 1 was found to be thermally resistant to liberation of
methane, we attempted to facilitate this transformation with a strong
donor ligand (e.g., PMg Surprisingly, however, addition of PMe
(1.0 equiv) in one portion to a GIOI, solution of1 in an NMR

to the isolable producé involved two intermediates4 and 5
(Scheme 232 The presence of two PMéigands in both intermedi-
ates was evident from theitH NMR integration ratios. The
31P{1H} NMR spectrum showed two singlets with Pt satellite
coupling representing the two intermediatel:d —24.74 {Jpip

= 1796.6) and5, 6 —10.98 {Jprp = 2755.9). The twotrans
oriented PMg in 5 was highly suggested by the observation of
virtual coupling?® between the two P nuclei in tHel NMR: both
proton signals associated with-FEH3 (6 0.35, t,3Jpy = 7.2,2JpH

= 74.5) and PtP(CHy);3 (0 1.12, t,Jpy = 3.4,%Jpr-y = 30.9) in5
appear as a triplet. By contrast, the broad and unresolve@HPs
signal in 412 was consistent with &is geometry and fluxional
movement of the two sterically demanding PM&ands. The
repulsive interaction between two cis-oriented phosphines is known
to be considerable, particularly in Tp complexés.

In the above-described experiment~d.:1 mixture ofl and
intermediated was immediately formed upon addition of PMé
then isomerized t& within 60 min!2° and the latter slowly con-
verted to6. Furthermore, addition of a small amount of PMe 6
converted it back tal, which then isomerized t6. These obser-
vations led us to carry out an alternative experiment in whichMe
(1.2 equiv) was added slowly over a period 60 min to a
CD,Cl, solution of1. Complete consumption df was observed,
leading to a~9:1 ratio of6 and5 within 4 h12® These results are
intriguing, particularly in light of the recent report that"P(CH;).H
undergoes reductive elimination to form Pt(ll) with the assistance
of HBAr 415 and that another close analogu€lpftriphos)Ir(GHs)-
(H),, liberates ethane rather than dihydrogen in the presence of a
sulfur-containing ligand®

Scheme 2
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Although mechanistic studies have suggested that reductive
elimination from octahedral Pt(IV) complexes involves predisso-
ciation of one ligand to form a five-coordinate intermedi&¥&,
the alternative routes involving concerted reductive coupifray,
ligand association prior to or during the reductive coupling step

tube at room temperature caused immediate evolution of hydrogenhave also been proposé&t® Since complexl is stable in protic

gas. While the formation of Hwas confirmed by théH NMR
signal of H ato 4.62, which disappeared completely upon purging
the mixture with argon for 2 min, no signal attributed to free,CH
in the range ob 0—0.5 could be detected. Following the reaction
by ™H and®!P{H} NMR revealed that the overall conversionlof

and aprotic solvents at 550 °C, it is conceivable tha}3-Tp to
n?-Tp interconversion and PMassociation to form intermediates
A andB (pathway a, Scheme 2) could occur prior to the extrusion
of H to give D.1°20An alternative (pathway b) involves formation
of ann!-H, Pt(ll), C,* prior to the coordination of PMgo produce
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D. IntermediateC, n>TpPt(I)Me(H,), which is isoelectronic of
72-TpPt(I)H(CH), 2, could affordD either via a concerted or a
stepwise ligand substitution of dihydrogen with PM#

In conclusion, compleg provides an unprecedented opportunity
to study the initial step in the reductive elimination of hydridoalkyl-
metal complexes as an isolated kinetic ev@Both experimental

and theoretical studies to further understand the parameters govern-

ing the selectivity of G-H and H-H reductive coupling are cur-
rently underway. Other issues, such as the usefof C—H meta-
thesis reactiond! will be reported in due course.
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